Homework 4 Solutions 2024-2025

The Chinese University of Hong Kong Department of Mathematics MMAT 5340 Probability and Stochastic Analysis Prepared by Tianxu Lan 1155184513@link.cuhk.edu.hk

Please submit your solutions on blackboard before 11:59 AM, Feb 17th 2025

February 11, 2025

1. Let (Ω, \mathcal{F}, P) be a probability space with a filtration $\mathcal{F} = (\mathcal{F}_n)_{n \geq 0}$.

(a) Let τ_1, τ_2 be two \mathcal{F} -stopping times. Prove that

 $\tau_1 \wedge \tau_2 := \min(\tau_1, \tau_2), \quad \tau_1 \vee \tau_2 := \max(\tau_1, \tau_2)$

are both stopping times.

(b) Let τ be an \mathcal{F} -stopping time. Prove that $\tau + 1$ is also an \mathcal{F} -stopping time.

2. Let $X_0 = 0$, $X_n = \sum_{k=1}^n \xi_k$, where $(\xi_k)_{k \ge 1}$ is a sequence of independent and identically distributed random variables such that $P[\xi_k = \pm 1] = \frac{1}{2}$. Let M and N be two positive integers and define

 $\tau := \min\{n \ge 0 : X_n = -N \text{ or } X_n = M\}.$

- (a) Prove that τ is an \mathcal{F} -stopping time, where \mathcal{F} is the natural filtration generated by X.
- (b) Assume that $\tau < +\infty$ a.s., prove that $P[X_{\tau} \in \{-N, M\}] = 1$.
- (c) Under the condition of (b), compute $E[X_{\tau}]$ and $P[X_{\tau} = -N]$. **Hint:** Let X be a martingale and τ be a stopping time with respect to a filtration \mathcal{F} , and if $\tau < \infty$ and the process $(X_{\tau \wedge n})_{n \geq 0}$ is uniformly bounded, then $E[X_{\tau}] = E[X_0]$.